package AES; import java.io.FileWriter; import java.io.IOException; import java.util.Base64; public class AES { protected static byte RC[] = new byte[] { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, (byte) 0x80, 0x1b, 0x36 }; // Precomputed Rijndael S-BOX private static final char sbox[] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; // Precomputed inverted Rijndael S-BOX private static final char rsbox[] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; private byte[][] mRoundKeys; private int countRoundKeys; protected static void XOR(byte matrix1[][], byte matrix2[][]) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { matrix1[i][j] ^= matrix2[i][j]; } } } // AES SubBytes and InvSubBytes passes static byte[][] SubBytes(byte[][] state, boolean inverted) { // Select the correct s-box, either inverted or not. char[] _sbox = inverted ? rsbox : sbox; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) state[i][j] = (byte) _sbox[state[i][j] & 0xFF]; // The mask is used to shift the byte value to the unsigned (positive) // one return state; } static byte[] SubBytes2(byte[] state, boolean inverted) { // Select the correct s-box, either inverted or not. char[] _sbox = inverted ? rsbox : sbox; for (int i = 0; i < 4; i++) // for (int j = 0; j < 4; j++) state[i] = (byte) _sbox[state[i] & 0xFF]; // The mask is used to shift the byte value to the unsigned (positive) // one return state; } // AES ShiftRow and InvShiftRow passes protected static byte[][] ShiftRows(byte[][] state, boolean inverted) { byte[] t = new byte[4]; for (int i = 1; i < 4; i++) { for (int j = 0; j < 4; j++) t[inverted ? (j + i) % 4 : j] = state[i][!inverted ? (j + i) % 4 : j]; for (int j = 0; j < 4; j++) state[i][j] = t[j]; } return state; } protected static void show(byte[][] plain_text) { for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { System.out.print(String.format("0x%02X", plain_text[i][j])); System.out.print(" "); } } System.out.println(""); } /* * private static void show2(byte[] plain_text) { StringBuffer strBuffer = * new StringBuffer(); for(int i = 0; i < plain_text.length; i++) { * strBuffer.setLength(0); * strBuffer.append(Long.toHexString(plain_text[i]).toUpperCase()); * System.out.print(strBuffer + " "); strBuffer.setLength(0); } * System.out.println(""); } */ private static byte[] XOR2(byte[] w, byte[] gw) { byte temp[] = new byte[4]; for (int i = 0; i < 4; i++) { temp[i] = (byte) (w[i] ^ gw[i]); } return temp; } // Multiplication function over GF(2^8) used in the MixColumns pass public static byte GFMult(byte a, byte b) { byte r = 0, t; while (a != 0) { if ((a & 1) != 0) r = (byte) (r ^ b); t = (byte) (b & 0x80); b = (byte) (b << 1); if (t != 0) b = (byte) (b ^ 0x1b); a = (byte) ((a & 0xff) >> 1); } return r; } // AES MixColums and InvMixColumns passes protected static byte[][] MixColumns(byte[][] state, boolean inverted) { int[] tmp = new int[4]; // In this way I can use a single method to do both the inverted and the // straight version. I choose the correct first operand of the // multiplication by checking the boolean "inverted" flag. byte a = (byte) (inverted ? 0x0b : 0x03); byte b = (byte) (inverted ? 0x0d : 0x01); byte c = (byte) (inverted ? 0x09 : 0x01); byte d = (byte) (inverted ? 0x0e : 0x02); for (int i = 0; i < 4; i++) { tmp[0] = GFMult(d, state[0][i]) ^ GFMult(a, state[1][i]) ^ GFMult(b, state[2][i]) ^ GFMult(c, state[3][i]); tmp[1] = GFMult(c, state[0][i]) ^ GFMult(d, state[1][i]) ^ GFMult(a, state[2][i]) ^ GFMult(b, state[3][i]); tmp[2] = GFMult(b, state[0][i]) ^ GFMult(c, state[1][i]) ^ GFMult(d, state[2][i]) ^ GFMult(a, state[3][i]); tmp[3] = GFMult(a, state[0][i]) ^ GFMult(b, state[1][i]) ^ GFMult(c, state[2][i]) ^ GFMult(d, state[3][i]); for (int j = 0; j < 4; j++) state[j][i] = (byte) (tmp[j]); } return state; } protected static String hex_to_string(byte[][] text) { String str = ""; for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { str = str + (char) text[i][j]; } } return str; } protected byte[] StringKeyToHex(String text, int keySize) // 16 byte { byte temp[] = new byte[keySize]; String convert; int k = 0; for (int i = 0; i < text.length(); i++) { char c = text.charAt(i); int ascii = (int) c; convert = Integer.toHexString(ascii); temp[k] = (byte) Integer.parseInt(convert, 16); k++; } return temp; } protected byte[][] getBlock16(String text) // 16 byte { byte temp[][] = new byte[4][4]; String convert; int i1 = 0; int j1 = 0; for (int i = 0; i < text.length(); i++) { char c = text.charAt(i); int ascii = (int) c; convert = Integer.toHexString(ascii); temp[i1][j1] = (byte) Integer.parseInt(convert, 16); i1++; if (i1 == 4) { i1 = 0; j1++; } } return temp; } public static void write_to_file(byte[][] arr, String path) { try (FileWriter writer = new FileWriter(path, false)) { for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { writer.write(Integer.toString(arr[i][j])); writer.write(" "); } } } catch (IOException ex) { System.out.println(ex.getMessage()); } } private byte[] generateRoundKeys(byte[] cipher, int keySize, int NB, int Nk, int Nr, byte round_constant) { // Nk can be 4, 6, 8 byte[][] w = new byte[Nk][4]; int wIndex = 0; for (int i = 0; i < keySize; i += NB) { // we choose 4 bytes for (int j = 0; j < 4; j++) { w[wIndex][j] = cipher[i + j]; } wIndex++; } byte[] gwLast = new byte[] { w[Nk - 1][1], w[Nk - 1][2], w[Nk - 1][3], w[Nk - 1][0] }; SubBytes2(gwLast, false); gwLast[0] ^= round_constant; byte[][] wNew = new byte[Nk][4]; wIndex = 0; for (int i = 0; i < Nk; i++) { if (i == 0) { wNew[wIndex] = XOR2(w[i], gwLast); } else { wNew[wIndex] = XOR2(wNew[i - 1], w[i]); } wIndex++; } // General round keys for (int i = 0; i < Nk; i++) { mRoundKeys[countRoundKeys] = wNew[i]; countRoundKeys++; } byte keyCurrentRound[] = new byte[keySize]; int k = 0; for (int i = 0; i < Nk; i++) { for (int j = 0; j < 4; j++) { keyCurrentRound[k] = wNew[i][j]; k++; } } return keyCurrentRound; } protected byte[][][] initRoundKeys(String keyHexString, int keySize, int NB, int Nk, int Nr) { int lengthRoundKeys = (Nr + 1) * 4; if (Nk == 6) lengthRoundKeys = (Nr + 1) * 4 + 2; if (Nk == 8) lengthRoundKeys = (Nr + 1) * 4 + 4; mRoundKeys = new byte[lengthRoundKeys][NB]; // general array countRoundKeys = 0; byte keyHex[] = new byte[keySize]; keyHex = StringKeyToHex(keyHexString, keySize); // Test for 128 bit key // byte keyHex[] = new byte[] {0x2b, 0x7e, 0x15, 0x16, 0x28, (byte) // 0xae, (byte) 0xd2, (byte) 0xa6, (byte) 0xab, (byte) 0xf7, 0x15, // (byte) 0x88, 0x09, (byte) 0xcf, 0x4f, 0x3c }; // Test for 192 bit key // byte keyHex[] = new byte[] {(byte) 0x8e, 0x73, (byte) 0xb0, (byte) // 0xf7, (byte) 0xda, 0x0e, 0x64, 0x52, (byte) 0xc8, 0x10, (byte) 0xf3, // 0x2b, // (byte) 0x80, (byte) 0x90, 0x79, (byte) 0xe5, 0x62, (byte) 0xf8, // (byte) 0xea, (byte) 0xd2, 0x52, 0x2c, 0x6b, 0x7b}; // Test for 256 bit key // byte keyHex[] = new byte[] {0x60, 0x3d, (byte) 0xeb, 0x10, 0x15, // (byte) 0xca, 0x71, (byte) 0xbe, 0x2b, 0x73, (byte) 0xae, (byte) 0xf0, // (byte) 0x85, 0x7d, 0x77, (byte) 0x81, // 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, (byte) 0xd7, 0x2d, (byte) // 0x98, 0x10, (byte) 0xa3, 0x09, 0x14, (byte) 0xdf, (byte) 0xf4}; // init key for Round 0 + for (int i = 0; i < keyHex.length; i += NB) { // we choose 4 bytes for (int j = 0; j < NB; j++) { mRoundKeys[countRoundKeys][j] = keyHex[i + j]; } countRoundKeys++; } // Remaining Round keys byte keyHexRound[] = new byte[keySize]; for (int i = 0; i < keySize; i++) { keyHexRound[i] = keyHex[i]; } int countRound = 0; if (Nr == 10) countRound = 11; if (Nr == 12) countRound = 9; if (Nr == 14) countRound = 8; for (int i = 1; i < countRound; i++) { keyHexRound = generateRoundKeys(keyHexRound, keySize, NB, Nk, Nr, RC[i - 1]); } byte Round[][][] = new byte[Nr + 1][4][4]; int i1 = 0; int j1 = 0; int roundNumber = 0; for (int i = 0; i < (Nr + 1) * 4; i++) { i1 = 0; for (int j = 0; j < 4; j++) { Round[roundNumber][i1][j1] = mRoundKeys[i][j]; i1++; // next row } j1++; // next column if (j1 == 4) { roundNumber++; j1 = 0; // again first column } } return Round; } protected byte[][] getBlock4_4(byte[] block, int size) { byte temp[][] = new byte[4][4]; int i1 = 0; int j1 = 0; for (int i = 0; i < size; i++) { temp[i1][j1] = block[i]; i1++; if (i1 == 4) { i1 = 0; // new line j1++; // move to next column } } return temp; } public static String ConvertToBase64(byte myByteArray[]) { Base64.Encoder myEncoder = Base64.getEncoder().withoutPadding(); String base64String = myEncoder.encodeToString(myByteArray); return base64String; } public static byte[] Base64ToByte(String myText) { byte[] decoded = Base64.getDecoder().decode(myText); return decoded; } }