
This document provides a step-by-step demonstration video audit of a small business 
security audit performed as part of a public case. All actions are performed for educational 
purposes. 
 





Case study objective 
 
This case study demonstrates how a standard website of a small logistics company can 
contain critical vulnerabilities, despite its simplicity and apparent security. 
We conducted a superficial but practical audit with an emphasis on real threats and mistakes 
that are most often made by owners of small websites. 
Why is this important 
 
Small businesses often become targets of attacks not because of hackers' interest, but 
because of the lack of basic cyber hygiene. 
Such sites: 
• are rarely updated 
• are not audited 
• contain confidential information (mail, order data, logins) 
 
Even one vulnerability can lead to the loss of a customer base, fines, or complete 
compromise of the domain. 





Domain WHOIS record analysis 
At this stage, we turn to the so-called WHOIS record — this is open information about the 
site's domain. It shows: 
• who registered the domain (in general terms), 
• through which registrar it was purchased, 
• when it was registered and when it expires, 
• which servers service this domain (NS — Name Servers). 
 
⸻ 
 
Why is this necessary 
 
A WHOIS record allows you to get primary technical information about a company: 
• If the domain was registered a long time ago — this is a plus, but sometimes old domains 
are vulnerable due to forgotten systems. 
• If the registration expiration date is soon — the domain can be intercepted by scammers. 
• NS (name servers) can point to the provider through which the site is serviced — and 
suggest possible vulnerabilities or configuration errors. 
 
What risks might there be? 
• 🔒 If the domain is not renewed on time, it can be bought by attackers and set up as a 
phishing site. 
• 🌐 Name servers (NS) can be checked for open ports or incorrect DNS settings, which is 
what we do in the following steps. 
 
 
 
Analysis of technologies used on the site 





What we do 
 
At this stage, we launch an analysis of the site to determine what technologies it is based on. 
This can be: 
• Programming language (e.g. PHP, Python), 
• CMS platforms (e.g. WordPress), 
• Libraries and frameworks, 
• Web server (e.g. Apache or Nginx), 
• Third-party connections (analytics, widgets, etc.). 
 
⸻ 
 
Why is this necessary 
 
Knowing what technologies are used, we can understand: 
• How up-to-date the system versions are, 
• Are there any known vulnerabilities in these components, 
• Is software used that has not been updated for a long time or is no longer supported, 
• What potential attack vectors can be considered. 
 
What risks might there be? 
• 🧱 If an outdated version of PHP was used, it would be a potential entry point through 
known exploits. 
• 🔍 The absence of a WAF (Web Application Firewall) or intrusion detection systems may 
mean that the site is open to simple automated attacks. 
• ⚙ Using a minimal set of technologies may mean saving on security. 
 
 
 
Missing HTTP Security Headers 





What we do 
 
At this stage, we check what HTTP headers are set on the server. These headers are like 
"technical rules" that the browser must follow when working with the site. 
Why is this necessary 
 
Certain headers are a basic defense against common attacks. Their absence does not break 
the site, but opens the door to: 
• attacks through content substitution (clickjacking), 
• data theft (MIME sniffing, Referrer leakage), 
• cross-site attacks (XSS), 
• session hijacking and cross-site request forgery (CSRF), 
• abuse of browser capabilities (camera, geolocation, clipboard API). 
 
What headings are missing in our example and what this may lead to: 
1. Man-in-the-Middle (MITM) 
If a site doesn't force the browser to use a secure connection (HTTPS), an attacker in a cafe 
or at the train station can intercept your data — for example, your login and password — 
when you visit the site. It's like someone listening to your conversation through a thin wall. 
 
⸻ 
 
2. Clickjacking 
You're shown a "Watch video" button on the screen, but underneath it is actually a "Delete 
account" button from another site. You click it — and a malicious action is launched. All this 
works because the site doesn't have any protection against embedding in other windows. 
 
⸻ 
 
3. MIME Sniffing 
Let's say a site loads a regular .txt file, but the browser thinks it's JavaScript — and runs it as 
a program. A hacker can replace the file, and the browser will execute malicious code. 
Without the necessary protection, the site itself gives the green light to the attack. 
 
⸻ 
 
4. Referrer leakage 
When you go from site A to site B, the browser can transmit your entire page address, 
including personal data in the link - for example: example.com/reset?token=123456. Without 
protection, an attacker can see your token or ID. 
 
⸻ 
 
5. Permissions abuse 
If the site does not restrict access to browser capabilities, it can request a camera, 
microphone, geolocation in the background. This is especially dangerous on phones. You 
may not even notice how you are being eavesdropped. 
 



Conclusion 
 
The absence of these five configuration lines is not a mistake, but negligence. Implementing 
them takes literally 5 minutes, but saves hours, money and reputation in the event of an 
incident. 
 
 
 
 
Find hidden paths and control panels 





The next step is an automatic search for "hidden" addresses on the site. We use a software 
program that goes through tens of thousands of possible ways - like /admin, /login, /backup 
and others. 
 
Why is this necessary? 
Developers often forget to close access to service pages. And this page can lead directly to 
the admin panel, where you can manage the site, databases and customer letters. If such a 
path is found, it will be a critical vulnerability. 
 
Example: 
The site looks the same, but when you go to site.com/admin, the administrator login form 
opens. Sometimes even without a name. 
 





Getting into the admin panel 
 
And here we are — we find a hidden login page for the site's admin panel. This is the 
interface through which the entire site is managed: orders, users, letters, settings, and the 
database. 
 
Why is this critical? 
If the admin page is accessible to everyone and has no protection, an attacker can try to 
brute-force the password or use old data from leaks. In some cases, it can be even worse — 
the admin panel opens without authorization. 
 
Example: 
You go to site.com/admin, and in front of you is the admin panel. Without a password. It's 
like leaving the front door of the office open at night. 
 
 
Checking email for data leaks 





Objective: to quickly identify whether a corporate or personal email has been compromised 
as a result of a data leak and determine the scale of the threat. 
 
What is done: 
1. Search public and private leak databases 
We use specialized resources and databases, such as Have I Been Pwned, DeHashed, as 
well as private commercial repositories, to check whether the email being checked appears 
in known leak incidents. 
2. Analyze the context of the leak 
We determine what data was compromised along with the email: passwords, personal data, 
financial information, credit card data, etc. This is important for assessing the degree of risk. 
3. Determine the time and scale of the leak 
We determine when the leak occurred and how large-scale it is - a one-off incident or a mass 
infection. 
4. Check the activity of the compromised data 
We additionally check whether the leaked data is used on the darknet or on forums for fraud 
and phishing. 
 
Case study: 
• Checking email: ivan.petrov@company.ru 
• Result: email found in a leak database of a large service for 2023. 
• Compromised data: email + hashed passwords + name and date of birth. 
• Consequences: a surge in phishing attacks on company employees using stolen emails 
was detected. 
 
Recommendations based on the results of the check: 
• Urgent password change on all related services 
• Implementation of multi-factor authentication (MFA) 
• Training employees in phishing recognition methods 
• Monitoring activity on the darknet for early detection of new leaks 
 
 
 
Detecting Leaked Passwords via Email 





 
What we did: 
We conducted an in-depth check of the email previously found in the leaks in the database 
of leaked credentials. 
 
What we found: 
• Several passwords associated with this email were compromised and available in the 
public domain. 
• The passwords were stored in an unprotected or weakly protected form (for example, in 
plain text or weakly encrypted hashes). 
• In some cases, the passwords were the same as those used to access corporate services, 
which significantly increases the risk of hacking. 
 
Why it's critical: 
• Leaked passwords give attackers direct access to the account, which can lead to the 
compromise of the entire corporate infrastructure. 
• Using duplicate passwords on different services exacerbates the threat. 
• The presence of such data in the public domain indicates weak security processes and the 
need for an urgent response. 
 
Real consequences: 
• Unauthorized access and theft of confidential information. 
• Potential financial losses and reputational risks for the company. 
 
Recommendations: 
• Immediately change all compromised passwords. 
• Implement a policy of unique and complex passwords. 
• Use password managers and MFA. 
• Regularly monitor leaks and train staff. 
 
 
 
Analyze open ports of a host by IP address 





What we did: 
After an initial Whois query, we identified the external IP address associated with the 
domain. We then scanned the open ports on that host. 
 
Goal: 
Assess the attack surface, identify available services and potential entry points for an 
attacker. 
Result: 
• Open port 53/tcp and/or 53/udp detected — this is the port used to operate the DNS 
(Domain Name System) service. 
 
Why is this important: 
• Port 53 is standard for DNS queries, but its openness to the Internet without filtering may 
indicate: 
• A working public DNS server, which is often the result of improper configuration. 
• Potential vulnerability to DNS recursion, DNS amplification (DDoS via open resolver) or 
traffic interception. 
• The ability for an external scanner to make requests for internal domains (if the server is 
improperly configured). 
 
Risk example: 
• If the DNS server allows recursive requests from external IPs, it can be used in DDoS 
attacks as an amplifier. 
• In addition, technical information about the internal structure of the network can be 
extracted via DNS. 
 
Recommendations: 
• Check whether the server should really process external DNS queries. 
• Restrict access to DNS by IP or geography. 
• Disable recursion and configure logging of DNS requests. 
• Conduct a configuration audit and update the DNS server to the current version. 
 
 
 
Checking DNS records of the NS (Name Server) type 





What we did: 
After discovering open port 53, we analyzed the domain's DNS records, specifically the NS 
(Name Server) records, to determine which servers were handling DNS requests for the 
domain. 
 
Why we did this: 
• To verify that the DNS server found by IP address actually serves the domain. 
• To check if the NS server matches the one with open port 53, which would confirm the 
connection between the vulnerable DNS and the domain. 
 
Result: 
• We received NS records pointing to DNS server(s), such as: 
• ns1.example-dns.com 
• ns2.example-dns.com 
• These domains were resolved to IP addresses, and one of them matched the previously 
found IP with open port 53. 
 
Why it's critical: 
• This confirms that the domain is using a vulnerable or misconfigured DNS server controlled 
by the company or contractor. 
• If such a DNS server supports insecure features (such as recursion or AXFR queries), this 
may lead to: 
• Disclosure of the internal structure of the domain (in the case of an open zone transfer). 
• Use of the server as a DDoS amplifier. 
• Compromise of traffic routing via DNS spoofing or cache poisoning. 
 
 
 
Technical confirmation of DNS vulnerability via dig 





What we did: 
We performed a direct check of the DNS server using the dig utility to test for vulnerabilities, 
in particular, recursive resolution for external IP addresses or the possibility of zone transfer 
(AXFR). 
 
What was confirmed: 
• The DNS server responds to recursive requests from any IP, which is unacceptable for 
public servers. 
• The response to an AXFR request (zone transfer) was also checked - in some cases, the 
server returned a full list of zone records, including: 
• Internal subdomains (for example, internal.example.com) 
• Pointers to mail servers (MX records) 
• Technical labels, IP addresses, and server names within the infrastructure 
 
Simplified request example: 
dig @<server-ip-address> example.com AXFR 
Answer: 
• The server returned dozens of lines of DNS records, which is unacceptable in the public 
zone. 
 
Why it is vulnerable: 
• Open recursive DNS allows the server to be used in DDoS attacks (DNS Amplification). 
• AXFR without authorization is a leak of the entire domain architecture, including internal 
elements that can be used for further hacking or phishing. 
 
Real risks: 
• The ability of an external attacker to collect data on the structure of the internal network. 
• Potential bypass of filtering mechanisms through DNS tunneling. 
• Compromise of internal service names and facilitation of social engineering. 
 
Conclusion: Security is not an option, but a necessity 
 
In this case, we clearly showed how just one compromised email, open DNS port or 
incorrectly configured name server can lead to a leak of sensitive information, hacking of 
infrastructure or loss of control over services. 
 
These vulnerabilities are rarely accidental - most often they appear due to a lack of time, 
resources or awareness. But in the information age, neglect of security is already a 
conscious risk. 
 
⸻ 
 
About my work 
 
I conduct security audits specifically from the position of real threats: 
• I use open sources and legal tools, 
• I conduct technical analysis the same way a potential attacker does, 
• But unlike him, my goal is not to harm, but to prevent consequences in advance. 



 
As part of the project, I always: 
• Act strictly within the law and ethics, 
• Provide clear, practical recommendations, 
• Generate a report that can be used as a roadmap for strengthening your organization's 
cybersecurity. 
 
⸻ 
 
Conclusion 
 
Cybersecurity is not a product that can be "bought once", but a process that requires 
attention and respect. 
If you want to ensure that your company's data, name, and customer trust are not in the 
public domain, start acting now. 


